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Abstract

We discuss the unique architectural elements of the
Los Alamos Message Passing Interface (LA-MPI), a
high-performance, network-fault-tolerant, thread-safe
MPI library. LA-MPI is designed for use on teras-
cale clusters which are inherently unreliable due to
their sheer number of system components and trade-
offs between cost and performance. We examine in
detail the design concepts used to implement LA-MPI.
These include reliability features, such as application-
level checksumming, message retransmission, and auto-
matic message re-routing. Other key performance en-
hancing features, such as concurrent message routing
over multiple, diverse network adapters and protocols,
and communication-specific optimizations (e.g., shared
memory) are examined.

1 Introduction

LA-MPI [7, 2] is an implementation of the Message
Passing Interface (MPI) [14, 15] motivated by a grow-
ing need for fault tolerance at the software level in large
high-performance-computing (HPC) systems.

This need arises from a growing concern with the
reliability of processors, communication networks, and
system infrastructure in large clusters. The manufactur-
ing tolerances to which such components conform may
be inadequate to guarantee error-free execution [18] of
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an application, given the length of a typical application
run and the very large number of individual systems that
are aggregated into a cluster. For example, a network
device may have an error rate which is perfectly accept-
able for a desktop system, but not in a cluster of thou-
sands of nodes, which must run error free for many days
or even months to complete a scientific calculation. No-
tice that the crucial quantity is the product of component
count and application run time. For applications with
very large run times – a data-processing application on a
satellite for example – fault tolerance is a concern even
for small clusters.

There have been several research efforts that incor-
porate network and process fault tolerance into message
passing systems, each addressing the problem from a
different perspective. Following Bosilca [3], we divide
messaging-fault-tolerance approaches into three cate-
gories depending on where in the software stack they
are implemented: the application, transport and data-
link levels. Any software implementation may address
fault tolerance at one or more of these levels, with the
choice implicitly reflecting assumptions about the type
and probability of failures.

One of the first efforts to incorporate fault tolerance
into MPI was CoCheck tuMPI [22] from Technischen
University Munich, which addresses fault tolerance at
the application level. CoCheck used the Condor [10] li-
brary to checkpoint and then if necessary restart and roll-
back the MPI job. This system’s main drawback was the
need to checkpoint the entire application, which could
be prohibitively expensive in terms of time and scala-
bility for large applications (like those that would run
on a terascale cluster). Another effort, Starfish MPI [1],
is similar in operation to CoCheck, and also operates
at the application level. However, Starfish uses its own



systems to checkpoint jobs, and does not rely on a flush
message protocol to handle communications. Starfish
uses “atomic” group communications protocols based
on the Ensemble system [6]. A third application level
approach is the FT-MPI [5] effort from the University
of Tennessee-Knoxville. FT-MPI handles fault toler-
ance at the MPI communicator level, and lets the ap-
plication developer decide what course of action they
wish to take. The application may decide to shrink, re-
build or abort the communicator depending on the type
of fault. More recently the widely used LAM/MPI [9]
implementation has released a module that implements
checkpoint/restart facilities.

LA-MPI addresses fault tolerance at all levels, with
our primary efforts directed at the data-link and trans-
port levels. Currently LA-MPI (a) reliably delivers mes-
sages in the presence of I/O bus, network card and wire-
transmission errors; (b) survives network card and path
failures (when the operating system survives) and guar-
antees delivery of in-flight messages after such a fail-
ure; (c) supports the concurrent use of multiple types
of network interface; and (d) implements message strip-
ing across multiple heterogeneous network interfaces,
and striping of message fragments across multiple ho-
mogeneous network interfaces. In future we do intend
to explore application-level fault tolerance (i.e., process
fault tolerance), but believe that a high-performance,
network-fault-tolerant messaging system is a necessary
first step. LA-MPI gives the MPI application developer
a guarantee of end-to-end network fault tolerance and
provides a firm foundation for reliable applications.

This paper gives a detailed description of the archi-
tecture of LA-MPI, focusing on its fault-tolerant fea-
tures. We believe high performance is a goal of equal
importance to fault tolerance, so we also present some
benchmark results indicating the performance impact of
implementing reliable message passing.

2 Architecture

Figure 1 shows the basic architectural elements of
the LA-MPI library. LA-MPI provides MPI version
1.2 and some version 2 services by layering MPI rou-
tines on a basic set of User Level Messaging (ULM)
interface primitives. ULM was designed to be a high-
performance, fault-tolerant, reliable messaging subsys-
tem capable of supporting any number of MPI imple-
mentations, and of being extended to support different
messaging models (e.g., put/get one-sided communica-
tions, etc.).

ULM itself consists of two layers: the Memory
and Message Layer (MML) and the Send and Receive
Layer (SRL). The MML provides message manage-
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Figure 1. LA-MPI architecture.

ment services including message routing (i.e., network
path selection), message tag matching, buffer allocation
(for uniform and non-uniform memory access machines
(NUMA)), message retransmission, and message sta-
tus tracking. The SRL provides message transmission
and reception over shared memory and different network
adapters. Each network type (Quadrics Elan3, Myrinet
GM, etc.), or path, manages its own resources, and im-
plements its own flow control and resource exhaustion
schemes. All elements of ULM are designed to be non-
blocking and thread-safe in operation.

Besides the basic architectural elements of the li-
brary, LA-MPI also implements a run-time system con-
sisting of an executable, mpirun, and the MPI library for
process spawning, standard I/O handling, job control,
and network topology wire-up. To start a MPI job, LA-
MPI spawns the user executable as a single process on
each machine, specified either explicitly or through a re-
source reservation system such as Platform’s LSF [20].
This single process upon calling MPI Init() partic-
ipates in local network resource discovery, which is
shared globally as needed. After this first phase of net-
work wire-up, this process forks itself to create all of the
desired MPI processes. As a performance enhancement,
forking is handled by default as a tree of processes. A
second post-fork phase of network wire-up is then initi-
ated and performed for those paths that require unique
information from each MPI process (e.g., unique UDP
ports for each MPI process). At the end of this second
phase, all processes synchronize through a global bar-
rier. On architectures in which LA-MPI handles stan-
dard I/O redirection and/or job control itself, the origi-
nal process never exits MPI Init(), and instead dae-
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monizes itself to handle I/O redirection, signal handling,
and job termination.

2.1 MPI

By layering MPI on ULM, most MPI routines can be
implemented in three phases: argument checking, dis-
patch to the appropriate ULM routines, and error code
and status translation, if necessary. A function dispatch
table provides a means of selecting different implemen-
tations of collective operations at run-time, to provide
optimal performance in different environments. This ba-
sic layering approach allows modularity, thereby facili-
tating code maintenance, while minimizing the impact
upon performance-critical services. Compile- and run-
time flags control whether MPI parameters are validated
before use, and the extra performance gained can be bal-
anced against the users’ confidence in the correctness of
their MPI-dependent application code.

MPI communicators and groups are shared between
the MPI and ULM layers. They have been augmented
to provide functionality not strictly required by MPI
semantics, but needed for internal operation and per-
formance optimizations (e.g., precomputed and cached
information to reduce the execution time of repeated
code). For example, the group object has extra maps,
such as a mapping of process rank to local process rank
(a unique rank between 0 and n-1 for n local processes
on a given machine) for faster access into local arrays
of lists. Also, precomputed trees are associated with
each group to enhance the performance of certain col-
lectives (i.e. gather/scatter operations between multiple
machines). ulm get info() and a number of other
ancillary functions are used by the MPI layer to access
information in these ULM objects.

MPI data types are stored as a “flattened” array of
(offset, size, sequential offset) structures. Contiguous
offsets are merged into a single entry, and a data type
with contiguous, in-order offsets will be represented by
a single structure. This flattened representation is highly
efficient for data packing and unpacking. It is also rela-
tively memory-efficient for many typical data types, but
it does not support a single MPI job over machines with
different byte ordering (i.e., a mixture of big-endian and
little-endian machines), which is rare in most cluster en-
vironments.

Constructor information from MPI type
calls, such as MPI Type struct(), is
saved for MPI Type get envelope() and
MPI Type get contents() (MPI version 2)
functionality. This information is traversed recursively
as needed for MPI Get elements(). Reference
counting is implemented for all data types to avoid the
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Figure 2. Descriptor relationships.

unnecessary overhead of creating duplicates of existing
data types for MPI Type get contents().

2.2 Memory and message layer

The Memory and Message Layer (MML) is the
common code between MPI functionality and network
transport-specific code (i.e., the SRL). It consists of a
set of common abstractions to ensure reliable message
delivery and matching while minimizing the overhead
of memory management of LA-MPI data structures and
buffers. Opaque MPI message requests are implemented
as pointers to MML message descriptors, which are used
to track sends and receives (figure 2).

The message descriptors contain MPI send and re-
ceive parameters such as the message tag, source or des-
tination process, and communicator. The descriptors
also maintain status information and a flag that indicates
whether the operation has completed. In addition, the
send descriptor contains all of the necessary information
to send a message reliably, including lists of message-
fragment descriptors (see section below). The receive
descriptor is used for matching message fragments with
a particular message, and also keeps track of the num-
ber of bytes received and discarded due to a too small
receive buffer.

LA-MPI transmits messages in fragments whose size
is determined by the underlying SRL network transport
(or path, as described later in section 2.2.2). Each net-
work transport handles its own flow control to prevent
resource exhaustion, and minimizes the memory foot-
print of the library as a whole. Message fragmentation
also allows LA-MPI to transmit a message simultane-
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ously over different physical interfaces for a given net-
work transport. For example, on LANL machines made
up of multiple SGI Origin 2000 SMPs interconnected
by a switched network with 2 to 13 HIPPI-800 adapters
each, LA-MPI can effectively transfer an MPI message
over all 2 to 13 adapters simultaneously for greater band-
width.

Fragments are tracked by a set of message-fragment
descriptors which are associated with a message de-
scriptor. Each message send descriptor manages two
lists of fragment descriptors: FragsToSend for frag-
ments whose resources still need further allocation, and
FragsToAck for sent fragments that are awaiting ac-
knowledgment of successful delivery from a peer pro-
cess. The message send descriptor itself is stored on one
of two similarly paired lists: an incomplete list for send
descriptors that still need further processing for all frag-
ments to be sent, and an unacknowledged list for send
descriptors awaiting peer acknowledgment.

Message progress from incomplete to unacknowl-
edged for fragments and all message descriptors is
made via calls to ulm make progress(). These
calls are embedded in MPI operations such as wait
and test, and other potentially blocking calls such as
MPI Barrier(). Currently, LA-MPI does not use
a separate thread for making progress asynchronously,
but uses polling in various library entry points. The in-
discriminate use of threads can lead to an oversubscrip-
tion of processors, which creates resource contention.
Polling prevents this cache and context switching con-
tention with the application’s main code, but does re-
quire special design considerations to handle the uncer-
tainties of MPI scheduling. In particular, the retransmis-
sion scheme must be designed not to overrun receiver re-
sources simply because the remote process is occupied
with non-MPI processing.

The MML message and message-fragment descrip-
tors are maintained in arrays of free lists. Each free
list may be constructed with memory policies to allo-
cate machine memory close to a given process rank’s
processor and its local memory. This architectural
consideration is extremely important for good perfor-
mance on large NUMA machines, such as SGI’s Origin
2000 and 3000 machines. Memory allocation for long-
lived objects is managed with sub-allocators that subdi-
vide large chunks of memory, allocated via malloc()
or mmap(), into fixed elements whose addresses are
quickly allocated and released by the use of a simple
stack [12]. If the memory is private to a process, then
new elements can be created by allocating another chunk
of memory. If the memory is anonymous shared mem-
ory (allocated from a common ancestor and hence grow-
able only with local process synchronization), then re-

source exhaustion is handled with simple retry logic
until a maximum number of retries has been reached.
Experience on a number of platforms has shown that
the sub-allocator approach is significantly faster than
a general-purpose allocator, such as malloc(). The
same strategy is used for SRL objects (see section 2.3).

In the case of MPI persistent send requests, several
message descriptors can be generated due to MPI’s local
send completion semantics (which are necessary for low
latency). These must be managed concurrently by the
MML.

2.2.1 Fragment retransmission and check-
summing

Unlike many MPI libraries that consider all underly-
ing communication perfectly reliable, LA-MPI option-
ally supports sender-side retransmission of messages
by assigning each fragment a timeout for acknowledg-
ment and by periodically checking a list of unacknowl-
edged fragments for message send descriptors that have
exceeded their timeout. This retransmission scheme
is appropriate for low-error-rate environments, typical
of most clusters. Each network transport is responsi-
ble for arranging to retransmit the necessary fragments.
Each fragment’s retransmission time is calculated using
a truncated exponential back-off scheme; this avoids re-
source exhaustion at a receiving process that is busy do-
ing non-MPI computation. Fragments that must be re-
transmitted are moved from the FragsToAck list to the
FragsToSend list, and the associated message send
descriptor is placed on the incomplete list.

Each network transport is also responsible for pro-
viding a main-memory-to-main-memory 32-bit additive
checksum or 32-bit cyclic redundancy code (CRC), if it
is needed. This checksum/CRC protects against network
and I/O bus corruption, and is generated at the same time
data is copied, if at all possible. By delaying checksum-
ming to avoid wasting memory bandwidth, a received
fragment is not necessarily a deliverable, or uncorrupted,
fragment.

Several MML generic features aid in the implemen-
tation of this retransmission and checksumming scheme.
Every fragment is assigned a range from a sequence
of monotonically increasing 64-bit numbers (sequence
numbers) for each (sender, receiver) pair of processes.
These sequence numbers are recorded by the receiving
process in a special object, SeqTrackingList, as
an ordered set of non-contiguous ranges of sequence
numbers; these lists use internal hint pointers to ex-
ploit any temporal locality in accessing these lists to
minimize access overhead. The receiver maintains two
SeqTrackingList lists for each peer with which
it communicates to distinguish between fragments that
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Figure 3. Retransmission and check-
summing.

have been received, and those that have been received
and delivered successfully (i.e., no data corruption). Du-
plicate fragments are easily detected by checking the re-
ceived fragment’s sequence number against the received
SeqTrackingList.

Upon processing fragment acknowledgments from a
receiver, a sender will store two special values that are
carried in every acknowledgment: the largest in-order
peer received sequence number (LIRS), and the largest
in-order peer delivered sequence number (LIDS). The
LIRS is used to increase the timeout between the retrans-
mission of fragments that have been received, but whose
data integrity has not been checked yet; it may increase
or decrease over time, depending upon transmission and
I/O bus errors. The LIDS is used to free any fragments
whose acknowledgment was lost. The LIDS is always
less than or equal to the LIRS. Figure 3 shows the in-
teraction of these sequence numbers, the retransmission
scheme, and checksumming.

While this approach exhibits many similarities to the
internet’s transmission control protocol (TCP/IP), there
are several key differences. TCP provides end-to-end
reliability and flow control at the network level via a
sliding window protocol that limits the number of un-
acknowledged segments or fragments that are in-flight

in the network to the window size advertised by the
receiver. Unacknowledged segments are retransmitted
by the sender on a timeout computed based on an esti-
mate of round-trip time. In the event of network con-
gestion, the sender must decrease the window size and
increase retransmission timeouts to avoid flooding the
network with retransmissions. The reduced window size
and delay in acknowledgments throttle the application
reducing its effective bandwidth. As congestion in the
network improves, the sender will incrementally adjust
these parameters until the full bandwidth is restored or
additional segments are lost, at which point the cycle is
repeated.

In contrast, LA-MPI can bypass much of the com-
plexity of the TCP approach due to the nature of the tar-
geted clusters. Main-memory-to-main-memory reliabil-
ity is provided via the MML, which optionally handles
checksumming and retransmission on a per-fragment
basis. Flow control is delegated to the lower-level SRL,
which employs path-specific features (e.g. Quadrics
events, shared memory) to provide maximum utilization
of each respective network path without overloading the
receiver. The relatively low error rate of the targeted
clusters and the ability to separate acknowledgments
from flow control allows the retransmission timers to be
configured at relatively long intervals without adversely
affecting the network bandwidth. The overall approach
both improves the reliability and performance over TCP
while providing comparable performance to other MPI
implementations which do not provide end-to-end relia-
bility.

2.2.2 Network path interactions

The network path object is an abstraction of lower-level
network transports and devices that are available to LA-
MPI. Each path can represent a single network adapter,
or a set of common adapters, or even a common pro-
tocol over many different network adapters. LA-MPI
currently implements paths for the user datagram proto-
col [21] (UDP over all IP-enabled devices), shared mem-
ory, Myrinet GM [17], Quadrics Elan3 [19] remote di-
rect memory access (RDMA), and HIPPI-800 operating
system bypass (SGI IRIX only). Paths for Myrinet MX
and Infiniband [8] (Mellanox HCA Verbs [13]) are in
development. In all of our current paths except UDP/IP,
which treats multiple network adapters as a single In-
ternet Protocol ”device”, multiple network adapters are
used by a single path instantiation, if they exist on the
machine. By fragmenting messages and sending differ-
ent fragments over different network adapters, LA-MPI
takes advantage of all available bandwidth.

Each path provides a common set of services to the
library (via virtual methods):
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� to store/retrieve a handle to a path:
bindToContainer(), getHandle(),
and getContainer();

� to control a path’s status and query remote pro-
cess reachability: isActive(), activate(),
deactivate(), and canReach();

� to store/retrieve information about a path:
getInfo(), and setInfo();

� to control the ownership of a MPI message:
bind(), and unbind();

� to initialize and send/resend a bound mes-
sage: init(), send(), retransmitP(), and
resend();

� to query a message’s send status: sendDone();

� to receive message fragments from a path:
receive(); and

� to check whether control messages (non-MPI mes-
sage data) need sending and to send those control
messages: needsPush(), and push().

Each MPI communicator contains a bind method that
associates a message to a particular path. This function
can be manipulated on a per-communicator basis via a
get/set ULM interface. The default function implements
a static hierarchy of network paths based on the nom-
inal bandwidth; if there is only one path available, the
function returns immediately with that one.

At startup, each path does basic initialization, and
registers with a global pathContainer. During reg-
istration the pathContainer queries the path to de-
termine which processes it can reach via that path.
One method, paths(), is used to find all of the cur-
rently active paths to a given process, and another,
allPaths(), is used by ulm make progress()
to poll all active paths for received data.

Figure 4 illustrates the interactions between send
messages and paths. Using these abstractions, LA-MPI
has the necessary infrastructure to support automatic
network fail-over (currently in development) in the face
of general and specific network failures, including net-
work adapter, switch, and link failures. Each path sets its
own policy for determining when a path failure has oc-
curred, and signals that a message needs to be sent over
another path (i.e., rebound to another path) by return-
ing a path failure error code. If a path manages multi-
ple network adapters, and another managed adapter can
reach the receiving process, then the path is responsible
for silently retransmitting the affected traffic over that
adapter without signaling failure.

No paths available!

path found

path is O.K.

message delivered!

path selection

new message path::send()

path::sendDone()

more data to send andpath "owns"
message

terminate MPI job

message resources
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path::bind()

path::unbind()

path::init()

path failure

progress:
path::needsPush() && path::push()
− control msgs

path::retransmitP() && path::resend()
− retransmission of msg. fragments

path::receive() − receive msgs

or sent completely
message not acknowledged

Figure 4. Message-path interactions.

2.2.3 Message tag matching

Because LA-MPI supports the concurrent use of mul-
tiple networks, MPI message-tag matching is imple-
mented independently of the underlying networks. In
order to preserve MPI semantics, messages between any
two processes must be matched by the receiver in the or-
der that they are posted by the sender. LA-MPI accom-
plishes this with a message sequence number that is sent
with all fragments of a message. This sequence number
increases monotonically, and is unique between a given
sending and receiving process. Since fragments can be
received out of order over different network adapters,
tag matching can be accomplished with any of a mes-
sage’s fragments. Each receiving process tracks the next
expected sequence number for a given sending process.
While this sequence number prevents matching mes-
sages out of order from the sending process’ perspective,
message receive descriptors are kept in a list in the order
they are posted for faster processing.

When a message fragment is received, its message
sequence number is compared to the next expected se-
quence number. If a fragment’s message sequence num-
ber is greater than the expected sequence number, then
the fragment has been received ahead of sequence and is
stored on a special array of lists that are indexed by the
sending process’ rank.

If a fragment’s message sequence number is equal
to the expected sequence number, then this is the first
fragment received for this message, and the fragment
is matched against the next appropriate message receive
descriptor. If a match is not made, then the fragment is
stored on a special ok-to-match array of lists that is in-
dexed by the sending process’ rank. If a match is made,
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Figure 5. Message tag matching.

then the fragment is processed (copied, checksum/CRC
verified, and an ACK generated, as needed), and any
fragments of this same message on the ok-to-match list
are also processed. The matched message receive de-
scriptor is moved to a special list for matched descrip-
tors. In either case, the receiver then increments the
next expected sequence number, and checks the ahead-
of-sequence fragment list for a possible match to the new
expected sequence number.

Finally, if a fragment’s message sequence number is
less than the next expected sequence number, then the
fragment must belong to a message whose first frag-
ment has already arrived. This fragment is processed
in almost the same way as the sequence equality case.
If a match was already made by checking the special
matched descriptor list, then the fragment is processed.
If a match has not been made, then the fragment is ap-
pended to the ok-to-match list, along with the first frag-
ment and any other fragments that have previously ar-
rived. Figure 5 illustrates the entire matching process.

In multi-threaded operation LA-MPI uses an array of
receive locks, indexed by the sending process rank, to
prevent race conditions from the simultaneous posting of
message receive descriptors (e.g., MPI Irecv()), and
processing of received fragments. In processing non-
wild-card receive requests, only threads trying to receive
messages from the same sending process must contend
for the same locks. Wild-card requests, however, require
the acquisition of all receive locks; the resultant perfor-
mance degradation is a design trade-off against the per-
formance gained for non-wild-card requests.

2.3 Send and receive layer

The Send and Receive Layer (SRL) consists of mul-
tiple network path implementations including a highly

optimized shared memory communication path. Each
path is independent and can be optionally disabled at
compile- or run-time.

2.3.1 Shared memory communication

LA-MPI’s shared memory path uses shared memory for
the message send descriptor, the message fragment de-
scriptors and data. This means that the receiving process
receives 32- or 64-bit pointers to these control structures,
and does not incur the overhead of allocating and man-
aging receive fragments. The only cost of data trans-
mission is remote access to another processor’s local
memory, which can be considerable on large NUMA
machines, especially with cache coherency. However,
LA-MPI manages the control structures to ensure that on
NUMA machines they are allocated close to the sending
process’ processor. This ensures that at least one of the
processes has minimum latency to the shared memory.

One of the key shared memory path structures is a
two-dimensional array of first-in-first-out (FIFO) lists
indexed by the sending and receiving processes’ ranks.
This array of FIFOs is constructed to use memory near
the sending process, and is used to transmit the 32- or
64-bit addresses of fragment descriptors to a receiving
process. Since each FIFO has only one writer, namely
the sending process, cache invalidation thrashing caused
by multiple processors writing to the same memory is
avoided. This procedure is lock-free (for single-threaded
applications) and gives very good performance. Since
the FIFOs are of fixed size, overflow can occur and is
handled using an ordered linked list.

The first fragment descriptor of a message
(SMPFragDesc t) differs from all other frag-
ment descriptors (SMPSecondFragDesc t) in that
it contains all of the information needed to match the
message to a posted receive descriptor at the receiving
process. Once the first fragment is matched, further
matching is avoided by the receiving process setting a
pointer to its message receive descriptor in the first frag-
ment descriptor and the message send descriptor. Any
following fragments can then be placed directly on the
receiver’s SMPMatchedFrags list. If a match has yet
to be made, they are placed on a fragsReadyToSend
list in the message send descriptor so that they can be
processed later by the receiver.

Since all messages need at least one fragment de-
scriptor, allocation costs are minimized by creating mes-
sage send descriptors and first fragment descriptors as
adjacent, paired objects. They are then allocated as a sin-
gle object. As a further optimization, the first fragment
descriptor can be created, and its address transmitted via
the fixed FIFO (and an overflow list) to a receiver be-
fore the sender actually copies message data into shared
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memory. The receiver’s cost of matching the first frag-
ment to a message receive descriptor can be hidden by
the time required for the sender to copy data into shared
memory. This is a performance gain for all messages
greater than zero bytes in length.

Similar shared memory communication methods
have been implemented the MP Lite message-passing
library [16].

2.3.2 Network communication

Each network path has its own design considerations
balancing performance, scalability, and memory usage.
In this section we briefly discuss interesting design
points for different network transports and devices.

LA-MPI’s user datagram protocol (UDP/IP) path im-
plementation uses two UDP sockets per MPI process. To
support full connectivity between N processes, LA-MPI
needs 2N UDP connectionless sockets, as opposed to
N(N-1)/2 connection-oriented sockets. This scalability
becomes very important in terascale distributed comput-
ing environments with thousands of MPI processes, and
was a major factor in choosing UDP/IP over connection-
oriented TCP/IP.

The UDP/IP implementation uses its two sockets
for different types of traffic. One (the short message
socket) is used for eager sending of small messages,
the first fragment of a multi-fragment message, and
control messages such as fragment acknowledgments.
The other socket (the long message socket) is used for
fragments of multi-fragment messages that have already
been matched. A multi-fragment message’s first frag-
ment is sent to the receiving process’ short message
socket. When it is matched and processed, an acknowl-
edgment is generated and sent back to the sending pro-
cess. Upon receiving the acknowledgment, the sender
then sends the remaining fragments to the receiver’s
long message socket. This protocol ensures that any traf-
fic on the long message socket can be processed imme-
diately without additional user-level buffering that must
be maintained for an indefinite period of time.

All UDP/IP message fragments have a fixed MPI
header that is peeked at first (i.e., copied but not deleted
from kernel buffers), so that if the fragment’s contents
represent contiguous MPI data types, then the data can
be placed from kernel memory to the proper user address
via one recvmsg() call.

LA-MPI’s Quadrics Elan3 RDMA implementation
uses a radically different approach from the UDP/IP im-
plementation. The Elan3 library provides facilities to
create chained DMAs (batches of DMAs performed se-
quentially by the Elan3 processor), and support for two
types of RDMA writes into a remote process’ 32-bit ad-
dress space: a queue DMA that delivers a payload up to

buffer
User receive

− every N seconds, determine time−weighted

X buffers
average buffer free list size X, and release

− copy data, verify CRC/checksum
and send ACK, depending on 
run−time settings...

Elan3 addressable user
data

Elan3 addressable
destination buffer

Elan3 queue
in main
memory at

address
global virtual

Sender Receiver

− request destination buffer for data, if 
buffer not already cached for receiver

− send message fragment

− allocate elan−addressable buffers

− acknowledge memory release 
request

queue DMA (header) +
(3) normal DMA (data) +

block copy event (signals
chained DMA completion)

(1) memory request (2) memory response

(4) data ACK

(6) memory release response(5) memory release request

Figure 6. Quadrics Elan3 send and receive
implementation.

320 bytes to a remote queue whose access is coordinated
between the network adapter and the main processors;
and a normal DMA that delivers an arbitrary payload
to a particular virtual memory address of a remote pro-
cess. A block copy event copies the contents of an Elan
adapter memory region to another Elan-addressable re-
gion, usually in main memory; by chaining a block copy
event at the end of a set of RDMA writes, a local pro-
cess can be notified that all of the previous RDMA op-
erations have completed. This is extremely useful, if the
ACK protocol has been disabled by run-time settings, or
if the process is trying to detect path failure.

LA-MPI utilizes both of these types of DMAs by
sending fragments’ header information (with 52 bytes
of immediate data payload) and all control messages via
queue DMAs with a queue element size of 128 bytes,
and by sending larger fragments via normal DMAs to
Elan3 addressable memory that has been allocated using
a memory request/response protocol. Fragments with 53
bytes of data or more are sent using chained DMAs, with
the data sent first using a normal DMA and the header
information sent next using a queue DMA. A special
copy event that copies a known value into an event block
in main memory terminates the chain, and is used to sig-
nal the completion of the chained DMA locally.

Each process allocates a single queue per network
adapter, or rail in Quadrics parlance, at the same vir-
tual memory address. By sending all control informa-
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tion to one of these queues, LA-MPI minimizes polling
overhead. The Elan3 adapter only supports access into a
32-bit virtual memory address space; on 64-bit architec-
tures the Elan3 adapter can only access a static portion
of the entire process address space. Since not all mem-
ory is guaranteed to be addressable, a special set of con-
trol messages is used between a (sender, receiver) pair of
processes to request elan-addressable memory buffers.
The sender caches these addresses for later use, and uses
them in a last-in-first-out (LIFO) fashion to reduce the
chances of a page fault. The sender maintains a time-
weighted average free list size of these cached addresses,
and lazily releases the average number of buffers on the
free list to the receiver process every couple of minutes.
Figure 6 illustrates the basic send and receive mecha-
nisms.

3 Performance

In this section we present benchmark results that
characterize the performance of LA-MPI on a variety of
computer architectures.

In table 1 we give “ping-pong” performance results
from two systems currently of interest to us: (a) an al-
pha/Tru64 system consisting of HP/Compaq ES45 4-
way nodes with 1.25 GHz alpha ev68 processors, and
a “dual rail” Quadrics Elan/Elite interconnect; and (b)
an i686/Linux system composed of 2 GHz dual Xeon
nodes with 2 Myrinet 2000 cards.

Also included in table 1 are results for LA-MPI’s
UDP/IP path run over Elan/IP, and Myrinet GM/IP.
These numbers give an indication of the very large cost
associated with a complete IP implementation, and why
LA-MPI uses the light-weight checksum/retransmission
protocol described in section 2.2.1. Note that over eth-
ernet LA-MPI’s UDP/IP path gives very similar perfor-
mance to the TCP/IP performance of other MPI imple-
mentations.

For the Quadrics path on alpha we quote the results
with and without data integrity guaranteed. As can be
seen the impact of reliability on performance is rela-
tively small, increasing latency by about a third and re-
ducing bandwidth by less than 10 %.

LA-MPI excels in the bandwidth benchmarks, for
two reasons. Firstly, on-host traffic is handled by the
shared memory path which has a much higher band-
width than the Elan devices. Secondly, on systems with
multiple network devices per node (for example, two
“rails” of Quadrics Elan/Elite network), LA-MPI highly
efficiently sends message fragments along both rails.
This differs from some other message-passing libraries
which use multiple network devices by allocating a de-
vice to all communication between a particular process

pair, a strategy that works well for random communica-
tion patterns but not for pairwise exchange patterns.

4 Summary and future work

With the rise of terascale distributed computing envi-
ronments consisting of thousands of processors and net-
work adapters, the need for fault tolerant software has
become critical to their successful use. Negligible com-
ponent error and failure rates in small to medium size
clusters are no longer negligible in these large clusters,
due to their complexity, sheer number of components,
and amount of data transferred. LA-MPI addresses the
network-related challenges of this environment by pro-
viding a production-quality, reliable, high-performance
Message Passing Interface (MPI) library for applications
capable of (a) surviving network and I/O bus data cor-
ruption and loss, and (b) surviving network hardware
and software failure if other connectivity is available. In
this paper, we have presented an overview of LA-MPI’s
design and implementation.

LA-MPI is currently available as open source soft-
ware under an LGPL license. It currently runs on
Linux (i686 and Alpha processors), HP’s Tru64 (Al-
pha only), SGI’s IRIX 6.5 (MIPS), Apple’s Mac OS
X (PowerPC), and Microsofts Windows (using Cyg-
win). It supports shared memory, UDP/IP, Quadrics
Elan3 RDMA, HIPPI-800 OS bypass (IRIX only),
and Myrinet GM paths, and work is progressing on
Myrinet MX and Infiniband (Mellanox HCA Verbs)
communications paths. LA-MPI supports job spawn-
ing and control with Platform LSF, Quadrics RMS,
Bproc [4], and standard BSD rsh. Please send email
to lampi-support@lanl.gov for more informa-
tion [11].

Future development will address

� the implementation of a fault-tolerant, scalable, ad-
ministrative network for job control, standard I/O
redirection, and MPI wire-up;

� the implementation of process fault-tolerance in the
face of multiple process failures;

� one-sided communication;

� collective communication optimizations;

� the implementation of dynamic topology reconfig-
uration and addition of MPI processes to support
dynamic process migration and MPI-2 dynamic
processes.
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System Path Latency (�s) Bandwidth (MB/s)

alpha Shared Memory 2.93 935
alpha Quadrics/Elan (1 NIC) 11.23 (8.39) 257 (273)
alpha Quadrics/Elan (2 NICs) 11.37 (8.43) 438 (468)
alpha Quadrics/Elan (UDP/IP) 156 67
i686 UDP/IP gigE 125.1 91
i686 Shared Memory 3.09 455
i686 Myrinet/GM (1 NIC) 11.91 241
i686 Myrinet/GM (2 NICs) 12.26 403
i686 Myrinet/GM (UDP/IP) 125.2 94
i686 UDP/IP gigE 125.1 91

Table 1. Zero-byte latency and peak point-to-point bandwidth for various LA-MPI paths. For
the Quadrics path, we also give (in parentheses) the performance numbers with reliability
(guaranteed data integrity) turned off (a run-time option).
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